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A suitable general statistical framework is established by taking quantum 
mechanics as full, and other (state-distinguishing) statistical theories as partial 
theories with respect to a given relevant subset of observables. The partial 
theory exists and is unique up to equivalence. The choice of the simplest or 
canonical one is determined. The recently introduced hybrid, i.e., half quantum 
mechanical and half classical discrete, statistical states obtain thus their rightful 
place in a hierarchy of relevant quantum statistical theories. On the other hand, 
these states are shown to represent a derivation of the quantum object-subject 
split with a well-defined subject that encompasses preparator or measuring 
instrument in a natural way. 

I. I N T R O D U C T I O N  

The state of an object is usually described by a state vector  or  more  
generally by a statistical operator .  By this it is unders tood  that  the world 
is divided into two (nonover lapping)  parts:  the object and the rest of  the 
world, and  that  the quan tum mechanical  formal ism says nothing abou t  the 
latter. This is the usual split (frequent synonyms:  cut, division), and one 
can say that  it has an empty  or ill-defined subject. 

It seems to me that  this stat~ of affairs is fully sat isfactory only in the 
frame of ideas of the original Copenhagen  in terpre ta t ion (Stapp, 1972), 
which might  be called, as suggested by Shimony 's  (1963) discussion, "early 
Bohr." It  can also be called instrumental ism,  because the instruments,  first 
of  all the p repa ra to r  (of the ment ioned  state), are, by postulate,  outside the 
formal ism and are only empirically recognizable macroscopic  objects in the 
laboratory .  

Bell (1990) (cf. also Gottfr ied,  1991) rightly criticizes the idea of the 
split on the basis of the following (freely formula ted)  requirements:  
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(i) A satisfactory theory should have as few interpretative elements 
outside the formalism as possible. 

(ii) The interpretative elements inside the theory should follow from 
the latter in a logical way and in a manner as natural as possible. 

The first aim of this article is to show that Bell's two requirements can 
be satisfactorily met as far as the preparator and the measuring instrument 
as "subject" are concerned. The second aim of this work is to introduceand 
elaborate the partial-state concept (as a natural quantum mechanical 
notion), and to apply it to the realization of the first aim. 

To see how to replace the criticized empty-subject idea by relevant 
information, we start with a quotation from what Shimony's (1963) discus- 
sion suggests to call "the late Bohr" (1961, p. 50): "The main point here is 
the distinction between the object under investigation and the measuring 
instruments which serve to define, in classical terms, the conditions under 
which the phenomena appear." And a few lines below: "heavy bodies like 
diaphragms and shutters . . . .  in contrast to the proper measuring 
instruments, these bodies together with the particles would constitute the 
system to which thO quantum mechanical formalism has to be applied" 
(italics added). 

The first sentence can be ascribed also to "early Bohr," or the original 
Copenhagen interpretation. What is new in the "late Bohr" is expressed in 
the second sentence: in some cases macroscopic instruments can be viewed 
as quantum objects. This suggests we start by "applying the quantum 
mechanical formalism," as Bohr put it, to object +subject (O + S), and 
then to shift the split so that S becomes the subject. We denote the split 
(before or after the shift) as O/S, where "/" stands for the cut between 
object and subject. (Note that we use the term "cut" not as a synonym for 
split, but as a part of the latter.) 

Applicability of the quantum mechanical formalism to O + S in the 
initial (O + S) situation implies that all quantum mechanical measurements 
are, in principle, performable on O + S. Contrariwise, after the shift (toward 
the object), the new subject S is described classically, and this corresponds 
to the fact that only macroscopic measurements should be performable on it. 

"Macroscopic measurements" were defined by yon Neumann (1955, 
Chapter V, Section 4) by a~suitable compatible set of quantum observables. 
(Among them were observables approximating the coordinate and the 
conjugate linear momentum.) It is a ma;hematical fact that such a set can 
be rewritten as consisting of functions of one observable. We refer to this 
observable as basic, and, for simplicity, we assume (like von Neumann did) 
that it has a purely discrete spectrum. 

This brings us essentially to the Jauch (1964, 1968) approach to 
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quantum measurement theory [cf. also Herbut, 1986a). It will be utilized 
in Section 3 in the hybrid states. 

In Section 2 we introduce a sufficiently wide framework of general 
statistical ideas to enable us to derive the general partial-state concept. In 
Section 4 we return to discussing the split, in particular to shed light on the 
roles of preparator and measuring instrument. 

Finally, Section5 contains some speculations on the possible 
applicability of the partial-state notion to enlargement of quantum 
mechanics when considered as incomplete. 

2. PARTIAL STATES 

One gets the first intuitive glimpse of the concept of a partial state 
by taking the state of a subsystem: Let P12 be the state of a composite 
quantum system, mathematically, a statistical operator in a tensor-product 
Hilbert space ~ |  Then, restricting onself to the first-subsystem 
observables, i.e., to Hermitian operators of the form A1 | 1, one has the 
well-known relations 

Tr12(P12(A 1 @ 1)) =Trl(Tr2Pa2)A1 =-TrlplA 1 (1) 

where Tri is the partial trace over subsystem i =  1, 2, and the statistical 
operator 

Pl -- Tr2012 (2) 

describes the state of the first subsystem. 
Since the set of all first-subsystem observables is a subset of the set of 

all observables for the composite system, the state p, of the first subsystem 
performs part of the task of the full state p12: it predicts the averages for 
first-subsystem observables. In this sense we may call Pl a partial state. 

A specific feature of this case is the fact that also the partial state is, 
in its turn, a quantum state (a statistical operator in ~ ) .  In Section 3 we 
show that there exist also partial states of a different kind. 

The first purpose of this section is to define the general concept of a 
partial state and that of a preorder between partial states (giving rise to 
chains). We do this in the framework of general statistical ideas. We start 
by introducing some elementary and standard notions and terms. 

Definition 1. Let I be a natural number, and let { wi: i = 1, 2 . . . . .  I} 
be an ordered set of positive numbers adding up to one. Then we have a 
set of statistical weights. If {wi: wi>0,  i =  1, 2 , . . . ,  L ~ i w ~ =  1} is a set of 
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statistical weights, and {st: i =  1, 2 , . . . ,  I} (_~S) is a corresponding set of 
elements, then 

s = - - ~ w t s t ~ S  
i 

is called a convex-linear combination of elements if the operation satisfies 
the following requirement: If each state s,. is given as a convex-linear 
combination st = Zk(t) Wk,)Sku) in its turn, then 

i k(i) 

is also a convex-linear combination (with double-indexed statistical weights 
and states). It the convex-linear combination always exists, then S is said 
to be a convex set. Finally, let (v, s )  be a formula associating a number 
with each element (v, s) e (V x S). It is said to be convex linear in S if for 
every convex-linear combination in S, and every v e V, we have 

We define a general state-distinguishing statistical theory. 

Definition 2. A statistical theory { V, S, (v, s )  } consists of a set V of 
variables (each having a set of values), of a convex set S of states, and of 
a formula (v, s )  giving, for each state s s S, the average of each variable 
v e V. (The average may turn out to be infinite for some pairs of variable 
and state.) This expression has to be convex linear in the states. Besides, 
the theory has its empirical part, consisting of a set of laboratory proce- 
dures allowing the measurement of each variable (in any state), and of a 
set of laboratory procedures making possible the preparation of laboratory 
ensembles for each state. The measurements are performed on the 
individual systems in these ensembles. The average-value formula gives the 
(finite or infinite) real number equalling (the limit value of) the arithmetical 
mean of the measured values in the laboratory ensemble (when the number 
of systems in it tends to infinity). Finally, we call a statistical theory state 
distinguishing if 

((v,  s )  = (v, s ' ) ,  Vvs  V ) ~ s = s '  (3) 

i.e., if distinct states must differ in the average of at least one variable. 
We restrict ourselves to state-distinguishing statistical theories 

throughout. 
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The convex structure of the set of states S corresponds to the empirical 
procedure of mixing (or taking the union) of laboratory ensembles, which, 
by definition, has to be done in constant proportions (of the numbers of 
systems in the ensembles). Upon normalization to one, these proportions 
become statistical weights, which go into the definition of convex 
combinations (making up the convex structure of S). The requirement of 
convex linearity on the average-value formula is an immediate consequence 
of the empirical facts that a convex combination means mixing and that the 
formula giving the average actually provides one with the arithmetical 
mean result in the ensemble. 

Next we define partial theories and partial states. 

Definition 3. Let there be given two statistical theories { V, S, (v, s )}  
and {W,Y~, ( w , a ) }  with two maps from the first to the second one: a 
bijection (we call it the map of variables) of a Subset V' (~  V) onto W, and 
a surjection (we call it the map of states) of S onto E such that the latter 
preserves the convex combinations. Let, further, the set of values of each 
variable v ~ V' be an invariant of the map of variables and of its inverse, 
and let the average value be an invariant of the two maps (restriction to 
V' is understood). Further, let the variables that are counterparts by the 
map of variables be measured by the same laboratory procedures. Finally, 
let the preparations of laboratory ensembles for the states of the first theory 
coincide with the preparations of ensembles for the states (of the second 
theory) that correspond (by the map of states) to the former. Then we say 
that the second theory is a partial theory with respect to the first one and 
with respect to V', and that the states of the second statistical theory are 
partial States (with respect to V') of those states of the first theory of which 
the images (by the map of states) they are. 

The requirements are obviously necessary in view of the above 
outlined empirical meaning of the statistical entities involved. Further, the 
states of a subsystem mentioned in the Introduction satisfy Definition 2 
(cf. Proposition 2 below). 

Definition 4. If in the relation between two statistical theories that is 
described in Definition 3 the subset V' of variables in the first statistical 
theory is the entire set V of variables and the surjection (of states) is a 
bijection, then the maps establish a symmetrical relation. We speak in this 
case of equivalent statistical theories and of equivalent statistical states (and 
of same variables). 

The just defined concept of equivalence, of course, generalizes that of 
identity. 
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Let us imagine along with quantum mechanics of the given quantum 
system other statistical theories forming a sufficiently wide set with the 
binary relation defined in Definition 3 in it. This relation is obviously 
reflexive and transitive, i.e., a so-called preorder (Birkhoff, 1940). As known 
(and as it is straightforward to see), every preorder induces an equivalence 
relation: two elements being, by definition, equivalent if they stand in the 
preorder relation whichever of the two elements one takes first. In the 
quotient set (the elements of which are the equivalence classes) the 
preorder induces (via arbitrary element) and order relation, i.e., a preorder 
with the additional property of antisymmetry: the equivalence defined by 
this preorder is the identity in the quotient set. 

Envisaging the set of all states in all the statistical theories, the above 
partial-state relation is also a preorder (transitivity is easily established). 
This implies that we can have chains of substates, and equivalent substates, 
defining equivalence via the preorder as explained above. We write the 
preorder (of theories and states) as " < "  in case of inequivalence. 

It is useful to find among equivalent partial states simplest or canoni- 
cal ones. A statistical theory is canonical if its entities (the variables, the 
states, and the average value formula) have minimal redundancy in their 
form, i.e., if they contain all the indispensable information and nothing else. 
This gives the basic idea, but by itself it is not sufficiently specific. We give 
a more specific definition of canonicity below. 

Following Jauch (1964, i968), we now incorporate a known general 
procedure into our concept of partial states. 

Definition 5. Let V' be an arbitrary given subset of variables in a 
statistical theory {V ,S ,  ( v , s ) }  (we refer to to the latter as the initial 
theory). We define the following equivalence relation ~ v' in the set S of all 
states of the theory: 

s , s ' ~ S ,  S~v ,S '  if ~ v , s ) = ~ v , s ' )  forevery v ~ V '  

Let us denote by S/,,~ v. the corresponding quotient set, i.e., the set of all 
equivalence classes in S. 

Definition 6. Utilizing the concepts of Definition 5, we now define 
the requisite entities for what we shall call the statistical theory of  
equivalence classes induced bu ' the subset V' of variables from the initial 
theory: 

The set of variables is V' with the same value sets and measurement 
procedures as in the initial statistical theory. The set of states is S / ~  v'. For 
every C ~ S / ~  v, all the preparation procedures of all s ~ C make up, by  
definition, the preparation procedures of the equivalence class C. A convex 
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structure is induced in S /~  v, by that in S via arbitrary representatives: Let 
{ wi: i = 1, 2 . . . . .  I} with I = 2, or 3, or . . . .  , be a set of statistical weights, 
and {C,.: i =  1, 2 . . . . .  1} a set of states from S /~  v,. Then, by definition 

S / ~ v , ~ C : ~  wiCi:~C wis i 
i = l  i 1 

where C(s) denotes the equivalence class to which the statistical states s 
belong, and {si: sie Ci, i =  1, 2 . . . .  , I} are arbitrary elements from the 
corresponding classes. The average value expression is given by 

VvEV', V C e S / ~ v , :  ( v , C ) = ( v , s ) ,  s e C  

where we have the average defined in the initial theory on the rhs, and s 
is an arbitrary element of C. 

It is easy to show that what we have called the statistical theory of 
equivalence classes, i.e., { V', S /~  v', (v, C)},  satisfies the requirements for 
a state-distinguishing statistical theory (cf. Definition 2). In Jauch's (1964, 
1968) approach the equivalence classes with a suitable V' played an impor- 
tant role in his attempt at a resolution of the quantum measurement 
problem. He called these classes "macrostates," thinking of them as of 
states of macrosystems or of classical systems. 

It should be pointed out that it may happen that we have a set of 
variables V' that is a proper subset of the set V of all variables in the initial 
theory, and still we can have all equivalence classes containing a single 
element, i.e., we can actually reobtain the initial theory unchanged (up to 
equivalence). Historically, a very important example for this possibility 
appeared in the context of distant correlations in quantum mechanics. 
A well known reaction to the famous Einstein, Podolsky, and Rosen (1935) 
article was Furry's (1936) paper, in which it was proved that if one restricts 
oneself to coincidence observables (as one must, due to the distantness of 
the particles), in terms of this restricted set V' one can still distinguish any 
two two-particle statistical operators, i.e., all equivalence classes have a 
single element. 

The following result is easily proved. 

Proposition 1. Let {V,S, (v ,s}}  be a statistical theory and V' a 
subset of variables in it. Another state-distinguishing statistical theory gives 
partial states with respect to the former theory and with respect to V' if 
and only if it is equivalent to the statistical theory of  equivalence classes 
{ V', S~ ~ v', (v, C } } induced from the former theory by V'. 

We have an immediate consequence of Proposition 1: 
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Theorem 1. When a statistical theory {V, S, (v, s )}  and a subset V' 
(__ V) are given, the corresponding state-distinguishing partial statistical 
theory always exists and it is unique up to equivalence. 

Making use of the statistical theory of equivalence classes, we now 
give a more specific (and more practical) criterion for canonicity. 

Definition 7. Let {W, ~, (w, o-)} be a state-distinguishing partial 
statistical theory with respect to { V, & (v, s)}  (the "initial theory") and 
with respect to V' (_~ V). The former theory can be considered canonical if 
each of its states is made up of entities that are determined by the states 
of the initial theory so that these entities are necessary and sufficient for 
the corresponding equivalence class ("corresponding" in the sense of the 
equivalence in Proposition 1 ). 

Let us turn now to quantum mechanics (QM). 

Lemma 1. Quantum mechanics is a state-distinguishing statistical 
theory. Writing the observables (Hermitian operators) as A and the states 
(statistical operators) as p, we have 

{V,S, @,s)  }=- { {allA}, {allp}, Tr Ap} 

Proof The only nontrivial part of the proof is perhaps the claim that 
the theory is state distinguishing. Let 

VA: TrAp =Tr  Ap' 

Confining ourselves to elementary events (ray projectors) A -  10)(01, we 
obtain 

Vl0)  e l l ,  ( r  1: (~'lp I~') = (q'l p '10)  

which, as is well known, entails p = p'. �9 

Finally, we return to the subsystem state Pl given in (2). 

Proposition2. Let us consider quantum mechanics in two versions: as 
the statistical theory 

{ V, S, (v, s )}  - {{all A12}, {all P~z}, Try2 A,2p~2} 

of a composite system with the state space ~ | (we call it the 
composite QM), and as the statistical theory 

{W,Y,, (w, a ) } -  {{aliA1}, {allpl},Trl AlPl} 
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of the first subsystem (we call it the subsystem QM). The underlying 
inclusion relation ,between sets of variables now has the form 

{all (A1 | 1)} = V ' c  V~ {all A12 } (4) 

Starting with the subset V' of variables, we define the map of variables 
(cf. Definition 3) from the composite QM to the subsystem QM as 
(A ~ | 1) ~ A 1, and the map of states as P~2 ~ P~ = Tr2 Pz2 [cf. (2)]. Thus, 
the subsystem states p~ become partial states of the states P~2 of the 
composite system: 

Pl < PI2 

Proof Straightforward [in view of (2)]. �9 

If the first subsystem is composite in its turn, i.e., if in ~ | ~2 we 
replace ~ by d~o | ~ to obtain ~o | ~ | ~ ,  then we have the chain of 
partial states (in this case subsystem states) 

Po < POl < P012 

where po=Trl  Po~ =Tr12Po12 and Pol ~Tr2po12. This is an 
corollary of Proposition 2. 

obvious 

3. THE HYBRID STATES AS PARTIAL STATES 

In the wake of Jauch's (1964, 1968) search for a solution of the 
measurement (or objectification) problem (Busch et al., 1991), the 
statistical theory of hybrid stages was derived in a systematic and natural 
way in previous work (Herbut, 1986b). We give anew a definition of it in 
this section and we show that this theory provides us with partial states. 

We have a composite quantum system with the Hilbert space ~ | ~ .  
Let there be given in ~ a discrete observable in spectral form as 

~k~2  (5) 
k 

(k~k'~b~176 and k takes up the values from a given finite or 
countably infinite index set). It is called the basic observable. 

We have in mind a restricted set V' of variables in ~ | ~ :  

V'={all(Al| anyAl,anyG} (6) 

where A1 is an arbitrary first-subsystem observable, and b~ are arbitrary 
real numbers. 
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Restriction to the set V' of observables does not amount to the use of 
statistical operators (in some Hilbert space other than ~ | ~2) as in the 
case of a subsystem (cf. the Introduction and Proposition 2). But the wider 
scheme of partial states introduced in Section 2 enables one to achieve an 
analogous aim. 

For the initial statistical theory we take quantum mechanics of the 
composite system: 

{V, S, (v, s )}  = {{all A,2}, {all Pro2}, Tr12 A12pm2} 

The subset of variables V' is defined by (6). 
We define what will turn out to be a state-distinguishing partial 

statistical theory { W, ZH, (w, a )  } on this basis, and we call it the statistical 
theory of hybrid states (Herbut, 1986b): 

(i) The set of variables W consists of all entities of the form 

w -  {(Am, bk): Vk} (7) 

where A1 is an arbitrary Hermitian operator in ~ll, and bk are arbitrary 
real numbers. 

(ii) The set of states X/~ is the set of all entities 

a=- { (6(Pk >O)P~ k), Pk): Vk} (8) 

where 6 ( p k > 0 )  equals 1 if p k > 0 ,  and it is zero otherwise, p~k) are 
arbitrary statistical operators in ~ (unless Pk = 0, when p~k) is undefined), 
and {Pk; gk} are arbitrary classical discrete probability distributions, i.e., 
Vk: p~ >7 O, ~k Pk = 1. 

(iii) The average-value formula is given by 

(w, a)  =- ~ pkb~ Trl (A,p]  k)) (9) 
k 

The additional details that are required go as follows: 

(i') The value set of a variable w = {(A1, bk): Vk} is 

{abk: a t  (spectrum if Al), Vk} (lo) 

The measurement procedure consists in coincidence measurement of A 1 o n  

the first subsystem and of Zk bkQ~ k) on the second. The value ab~ is the 
product of the results of these two measurements. 
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(ii') Let {wi>0: i=l ,2, . . . , I ;Z~wi=l } and { a i : i = l ,  2 . . . . .  I} 
be arbitrary finite sets of statistical weights and hybrid states, respectively. 
More explicitly, 

o.i~_ {((6(p~) > O)p]k,i), p(i)): Vk), i= 1, 2,... ,  I 

Then the corresponding convex combination is, by definition, given by 

where 

p~x)_~  ","'r162 , Vk ( l ib)  
i 

with the auxiliary entities 

Wlk)=--w~p~O/pk, Vk, i = 1 , 2  . . . . .  I ( l lc )  

It is 'straightforward to ascertain that the operation defined by 
(1 l a ) - ( l l c )  satisfies the requirement in Definition 1. 

As seen from the expression for Pk in ( l l a )  and from (l lc) ,  if pk>0 ,  
then {wlk): i = 1, 2, . . . ,  I} is a sequence of statistical weights, and if Pk -- 0, 
then pff)=0, i=  1, 2 . . . . .  I, and {wlk): i =  1, 2 . . . . .  I} is a sequence of zeros 
[making p]k) in ( l lb )  zero consistently with (8)]. 

As to the preparation procedures to obtain the hybrid states a e EH, 
they are the same as those of the corresponding quantum states P12 
(statistical operator in ~ | ~ ) ,  where "corresponding to cr" means "taken 
into a by the map of states" (see Theorem 2 below). 

(iii') The average-value expression (9) is convex linear in the hybrid 
states. This is a straightforward consequence of (11 a)-( 11 c): 

=2 
k 

; 2  
i 

{{'~" ,,,(k)~(k,i)) ) PkbkTr,\\~,vi el )Ai 

pkbk Trl (A, ~i (wip~i)/Pk)p~k'i) ) 

( Z  ~(m, Trl(A~p~k,i))) Wi IJk Uk 

Wi(W, ff i )  

The notion of a subsystem state Pl-=Tr2 P12 [cf. (2)] has, besides the 
partial-state concept, one more generalization (in a different "direction"): 
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that of a conditional state. We outline this concept here because we need 
it to fulfil the purpose of this section. 

If P12 is an arbitrary state of a composite system, and Q2 an 
arbitrary event for the second subsystem (projector in ~2) such that 
p-~ (Tr12 p12(1 | Q2)) > 0, then 

p~ = p-1 Tr 2 p~2(1 | Q2) (12) 

is the conditional state of the first subsystem under the condition that the 
event (1 | Q2) has occurred (has been measured) on the composite system 
in the state P12- 

This interpretation of p~ follows from three facts: 

(i) That p~ is a statistical operator in ~ (a first-subsystem state). 
(ii) That the probability of the (immediate) succession of two 

subsystem events P1 after Q2 equals the probability of their coincidence 
in P12. 

(iii) That one has 

Try2 p12(P1 @ Q2) - p Trl P~-Pl (13) 

which is the quantum counterpart of the well-know definition of conditional 
probability in classical probability theory and which is straightforward to 
derive (Herbut, 1986b). 

In the special case of Q2 = 1, one has p~ =p~ - T r 2  P12. Hence, (12) is 
a generalization of this formula (but it is not a partial state). 

Now we can carry out the main task of this section. 

Theorem 2. The hybrid states a e 2 ~ defined in (8) are partial states 
of some quantum state P12 (of the composite system) with respect to the 
subset of  variables given by (6). By this the map of variables is determined 
by 

AlO( bkQ ,)  
and the map of states is given by 

where 

and 

w = {(A~, bk): Vk} (14) 

p12 --, - { ( a ( p k  > pk) :  Vk} 

Vk: P k -  Tr12 p12(1 | Q~)) 

(15a) 

(15b) 

Vk, Pk > 0: p]k)_ p,~ =_ p~ l  Tr2 pj2(1 | Qtz k)) (15c) 
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Proof According to Proposition 1, Theorem 2 is true if and only if 
there exists a corresponding equivalence of the statistical theory of hybrid 
states and the statistical theory of equivalence classes. Precisely this is 
proved in the proof of Theorem 4 of Herbut (1986b). �9 

The proof of equivalence just mentioned also implies that the 
statistical theory of hybrid states is state distinguishing (like that of the 
corresponding equivalence classes). 

Theorem 3. The statistical theory ~{ W, ZH, (w, a )  } of hybrid states 
is canonical. 

Proof In view of Definition 7, the canonicity of the theory at issue 
was proved in Herbut (1986b) (see Theorem 3 and Corollary 5 there). �9 

We have the following chain of subsets of variables in ~ | ~ :  

{all(A~|174 (16) 

because 1 = Zk Q(k). We establish now the corresponding chain of partial 
states. 

Proposition 3. The chain of partial states that corresponds to the 
chain of subsets of variables (16)is 

p l < ( r < p l  2 (17) 

where Pt2 is any composite-system state (it is a partial state in an improper 
sense, i.e., it is a full state), a is its hybrid state in the sense of Theorem 1, 
and Pl is its first-subsystem state: 

~(k)_ (18) pl = ~ P~t,1 - Tr2 P12 
k 

[cf. (15a)-(15c)]. We can say that the hybrid state is interpolated between 
the state of the subsystem and the full state of the composite system [in the 
sense of (17)]. 

Proof To prove p l < a  in (17), we show that Definition3 is 
applicable to this case. Let the statistical theory of hybrid states and that 
of quantum mechanics in ~ be the two statistical theories required. Let 
V'=-{{(AI,1):Vk}: any A1} be the given subset of the set V of all 
variables in the initial theory [-cf. (7)], and let {(A~, 1): Vk} ~A~ be the 
required bijection of variables. Further, let 

a :::r Pl =- ~ PkP] k) (19) 
k 

902/32/7-7 
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be the required map of states, where aeEH,  p~, and p]k) a r e  given by 
(15a)-(!5c). To help to prove that it preserves convex combinations, we 
prove (19) first [utilizing (18)]: 

Tr2 P12 = Z Tr2(Pl2(1 @ Q(2k))) = ~ P~P~) 
k k 

[cf. (15b), (15c)]. Thus, evaluating Pl directly from P12 and via the hybrid 
state that is defined by P12, one obtains the same result. 

Now, let {ai: i =  1,2 . . . .  , I} and {wi : i=  1, 2 , . . . ,  I} be an arbitrary 
set of hybrid states and an arbitrary set of positive statistical weights, 
respectively. We have to prove that if 

ai=~p~ i), i =  1, 2 , . . . ,  I 

then a - ~ i  w i a ~ p l -  Z~ wiP~ ~ Let us have [in the sense of the second 
partial order in (17) and Definition 2-] 

(i) p12 ~ o'i, i = 1 , 2  . . . . .  I 

and we define Pl2=~.~i . . . .  ( i )  Since p12=~a=---~.iWiff i and Trzp12 " iV12 '  
~i wi Tr2 :,(i) v12, we have Pl =Y~ w~P7 ). In view of the preceding proof, we 
have proved the required convex-combination preservation. 

To prove that the map of states is a surjection, we take an arbitrary 
Pl. Let Pl= be a composite-system state, such that Tr2 P12 = Pl, and let P~2 
determine a as its hybrid state. Then a will, in its turn, determine the same 
Pl [as it follows from (19)]. 

Further, we prove that the two maps together preserve the average 
value: 

(W, O" ) = E Pk T r l ( A  1 p]k)) = T r x ( A  1 P l )  
k 

Finally, the map of variables is obviously measurement-procedure and 
value preserving. Since in the chain of maps of states 

pl ~ a.*::p12 

implied by (t7) the preparation procedures of a are by definition those of 
Pl2, and the preparation procedures of Pl equal those of P12, the map 
P l ~ a preserves the preparation procedures as required. �9 

There is another conspicuous chain of variables: 

(20) 
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The statistical theory { W, Sc, (w, s )  } that corresponds to the first sub- 
set is defined as follows: W--- {all w =- {bk: any bk, Vk}}, So.--- {Pk: Pk~  >0,  
Vk, Zk Pk = 1} (the classical discrete probability distributions), and the 
average-value expression is ( w, s )  =-~k pkbk. 

It is easy to prove that one has the following chain of partial states 
corresponding to (20): 

s < a < p l  2 (21) 

where s - { P k :  Pk >>'0, Vk, X~ Pk =  1} s Sc, is the image by the corre- 
sponding map of states of the hybrid state a =_ {(6(pk > 0)p~ k), Pk): Vk} [cf. 
(15a)-(15c)], etc. 

4. THE SPLIT IN THE CASE OF THE PREPARATOR A N D  THE 
M E A S U R I N G  I N S T R U M E N T  

Even in foundationally oriented articles on quantum mechanics one 
rarely discusses the preparator. This goes hand in hand with the suppressed 
empty-subject split mentioned in the Introduction. Namely, it is precisely 
the role of the preparator that is suppressed in the trivial, empty-subject 
split. 

We now show that a description of a split with a well-defined subject 
for the case of a a preparator is implied by the corresponding hybrid partial 
state. We confine ourselves to the special case of Stern-Gerlach measure- 
ment and preparation. (It is straightforward to extend the description to the 
general case.) 

Let 

ff(sz, r) = (1/2)l/zZ+(sz) ~b+(r) + (1/2) 1/2 Z_(Sz) ~b (r) (22) 

be the spin-spatial wave function of an electron [sitting on an atom of silver, 
e.g., that is suppressed in (22)] in the magnetic field of the Stern-Gerlach 
apparatus (Cohen-Tannoudji et al., 1977, p. 395). Here Z+(Sz) and t_(Sz) 
are the spin-up and spin-down states [_+ ) in sz representation, and ~b+(r) 
and ~ (r) describe upward-deflected and downward-deflected electrons~ 
respectively. 

The simplest way to treat the s~ measurement and preparation is (Peierls, 
1985) to take the empty-subject split as follows (see the Introduction): 

0 + S--- spin + (spatial degree of freedom) 

To fill in the required information for an explicit definition of the subject, 
we have to specify the basic observable (5). Instead, one can take a certain 

902/32/7-7* 
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function of the basic observable, the so-called pointer observable (Herbut, 
1991). For simplicity, we take these two concepts as equal. 

In our case we can take { + ,  - } for the set of values of the index k, 
and define 

Q~2 + ) -  I r ) ( r l  d x d y d z  
mczc - - ~  

Q~2 )= I r ) ( r l  d x d y d z  
nGC - - ~  

i.e., the projectors corresponding to the upper and the lower half-spaces 
(and for b+ and b any two distinct real numbers). Putting 
P12 ~ 1~r (~t] 12, where lff)12 is given in s2, r representation by (22), we 
can apply (15a) (15c) to evaluate the corresponding hybrid partial state. 
We obtain 

a =  {(I + ) ( + l ,  1/2), ( [ - ) ( - I ,  1/2)} 

Evidently, this hybrid state implies (or is adapted to) the split: 

O/S = - spin/(spatial degree of freedom) 

Utilizing the convex structure in E,~ given by ( l l a ) - ( l l c ) ,  it is 
straightforward to prove the following general result. 

Lemma 2. Any hybrid state a e E n  [cf. (8)] can be uniquely decom- 
posed into states each with a sharp value of the basic observable: 

ff = ~ Pk { ((~k',kP] k), ~k',k): Vk'} (23) 
k 

Thus, we can write our hybrid state as the following mixture: 

~ = (1/2){([ + ) ( +  l, 1), (0, 0)} + (1/2){(0, 0), ( I - ) ( -  I, 1)} (24) 

It is noteworthy that restriction to observables of V' [cf. (6)] converts 
a pure full state like the one given by (22) into a partial state that is a 
mixture. 

It is easy to show that we have two pure hybrid states on the rhs of 
(24). We discuss now the first one. 

Let us imagine that we have pierced the upper plate of the Stern- 
Gerlach screen (Cohen-Tannoudji et al., 1977) at the appropriate spot. Let 
the device be made so that it informs the experimenter if an electron has 
passed the hole, e.g., by measuring an anticoincidence consisting of the 
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occurrence of the event that the electron has entered the apparatus and the 
nonoccurrence of the event that the electron has arrived at the lower plate 
in the expected time interval. Then we have a first-kind or repeatable 
measurement (Busch et al., 1991), which is at the same time a preparation 
by measurement, both in the selective (i.e., definite-result-subensemble) 
version. This can be viewed as applying to individual systems. 

We concentrate on the hybrid partial state 

{(l+ ) (  +1, 1), (0, 0)} (25) 

that is the first constituent in the decomposition (24). Now we complete 
the definition of our subject by assuming that the quantum event Q~+) (see 
above) has occurred. Then the electron is prepared in the corresponding 
conditional state p ~ + ) _~ { + >, ( + 11. 

The symmetrical discussion applies to the second constituent in (24). 
To sum lap, the hybrid partial state (25), e.g., by itself fully defines the 

split with a well-defined subject as far as application to an individual system 
is concerned. The quantum mechanical part applies to the object, and the 
classical discrete part to the subject. Besides, since it is a sharp value 
(concerning the basic observable) state, it contains the information on 
which characteristic event of the basic observable, or subject event, has 
occurred. 

Besides preparation by measurement, there is also conditional prepara- 
tion. In our case of the Stern Gerlach experiment, we obtain this if the 
instrument is not provided with the ability to measure the mentioned 
anticoincidence. We can geometrically, i.e., by confining ourselves to the 
upper half-space, arrange the subsequent measurements so that a result is 
obtained only if  the electron had passed the hole [retroactive apparent 
occurrence; see Wheeler (1983); cf. also Herbut (1994)]. It seems to me 
that this case is in practice met more often than preparation by measure- 
ment because it is simpler. 

The interesting point about conditional preparation is that the object 
is described by the same state, in our case by [+ >, because, as it was 
explained above, it is a conditional state anyway. Whether the condition 
[the event Q(2+~ in the case of the first constituent in (24)] has occurred in 
an ordinary way or by apparent retroaction is immaterial for the hybrid- 
state formalism (and also if translated into a more standard form). 

Finally, one may wonder if the hybrid form of the split with a well- 
defined subject has any advantage over its standard form. The latter consists 
in three requirements: 

(i) That the cut is between the spin and spatial degrees of freedom, 
making the former object and the latter subject. 
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(ii) That the state of the individual object is a conditional state. 
(iii) That the above half-space projectors define the basic observable, 

and that occurrence of Q(2 +) is the condition. 

The hybrid partial state form of the split (25) contains precisely the 
same information. The ability to use it requires some learning (perhaps a 
disadvantage), but it contains in a systematically organized way the essen- 
tial idea of a split (with a nonempty subject). 

In the language of partial states, a split with a well-defined subject is 
obtained from a split with an ill-defined (or empty) subject if the corre- 
sponding hybrid state ~ is interpolated between the subsystem state Pl and 
the full state P12 [cf. (17)]. 

We close this section by remarking that the concept of occurrence of 
the subject event Q(2 k), though crucial for the notion of the split with a 
well-defined subject when applied to individual systems, remains outside 
quantum mechanics. This is tantamount to the well-known problem of 
measurement theory or of objectification in measurement (Busch et al., 
1991). Namely, "occurrence" does not seem to be an idea inherent in the 
quantum mechanicN formalism, though it appears indispensable. 

5. Q U A N T U M  STATES AS PARTIAL STATES IN I N C O M P L E T E  
Q U A N T U M  MECHANICS 

In this last section we speculate on the possible usefulness of the partial- 
state concept for a possible future completion of quantum mechanics either 
by only some hidden variables, or rather beables as Bell (1989) has called 
them (cf. also Herbut, 1991) (a partially causal theory), or by making all 
quantum observables having sharp values on the (hidden) subquantum 
level (a fully causal theory). 

In such a completion the quantum mechanical states would be partial 
states. A completed subquantum (partially or fully causal) statistical theory 
would be the initial theory {V, S, ( v , s ) }  in the notation of Section2, 
whereas quantum mechanics itself would take the role of { W -  V' - { all A }, 
E -  {all p}, (A ,p)=_TrAp} .  

It is then clear from Definition 3 that (V\V ' )  would be the set of all 
new variables, and that the subquantum states s e S belonging to the same 
inverse class of the map of states could be possibly distinguished only by 
the averages of the variables of this set. 

Summing up the procedure of completion according to Definition 3, 
we keep the quantum observables (essentially) unchanged, add a set of new 
ones, and replace each quantum state by a set of subquantum ones. This 
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p r o c e d u r e  can  be m a d e  m o r e  in t r ica te  by  rep lac ing  also the  q u a n t u m  
observab les  by  sets of s u b q u a n t u m  variables .  Such a p r o g r a m  was p roved  
poss ib le  by  D u r d e v i c  (1991). 
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